Product Data – Quasi-static Mechanical Analyzer (QMA)

PRODUCT OFFER

QMA standard solution is a plug-and-play system. It integrates both acquisition system and measurement bench and only requires electrical and USB connections. It comes with QMA-X software and useful accessories for samples installations. QMA system allows to measure circular sample materials of diameters¹ 29 mm, 44.44mm and 100 mm and get the following parameters based on the specified standard:

	Parameters
E – Young modulus (Pa)	\checkmark
<i>k</i> – Stiffness (N/m)	\checkmark
v – Poisson's Ratio	\checkmark
η – Structural Loss Factor (damping)	\checkmark
Based on ISO 18437-5 standard	\checkmark

¹ Custom accessories can be made for other diameters at the request of the customer

Standard Measurement Range

	QMA
Frequency	20 Hz to 60 Hz
E – Young modulus	300 Pa to 34 MPa ²
v – Poisson's Ratio	0 to 0.499
η – Structural loss factor (damping)	0 to 0.999

² depends on the diameter of the material

Hardware Specification

Specimen Specifications

Max. sample thickness	50 mm
Min. sample thickness	5 mm
Max. sample diameter	100 mm
Min. sample diameter	29 mm

Vibration Source

Vibration source	piezoelectric actuator
Open-loop Travel	2 mm
Stiffness in motion direction	0.15 N/μm
Blocking Force	300 N
Material	17-4PH Stainless Steel

Force sensor

Nominal Sensitivity	112.4 mV/kN
Measurement range	44.48 N
Non-Linearity	≤ 1 % full scale

Accelerometer

Nominal Sensitivity	10.2 mV/(m.s ⁻²)
Measurement range	± 490 m.s⁻² peak
Non-Linearity	≤ 1 %

Thickness measurement

Туре	lazer
Resolution	20 μm
Linearity	0.1 %
Laser Class (EN 60825-1)	2

DAQ

Acquisition card Brand	National Instrument
Input sampling rate	102.4 kS/s/channel
Output update rate	96 KS/s
Resolution	24 bits
Integrated piezo amplifier	150 V
maximum voltage	100 0

Communication	USB 2.0 Type A
Temperature range	10 to + 40 °C
Power	100-240 Vac 50/60 Hz
Dimensions	(457 x 485 x 398) mm
Weight	35 kg

Also provided with the equipment:

- **<u>Compression plates</u>**: a set of three compression plates for samples of 29 mm, 44.44 mm and 100 mm diameter.
- **<u>Centering tools :</u>** a set of three Centers for samples of 29 mm, 44.44 mm and 100 mm diameter.
- **<u>Verification sample:</u>** A verification sample with its verification certificate.
- Gages: Three gages of 10 mm, 25 mm and 50 mm thick for the calibration of the QMA's laser.

SOFTWARE DESCRIPTION

QMA- X software fully controls the measurement procedure from the calibration to the measurement itself. Every steps of the measurement process are detailed by illustrated instructions. The tested sample's diameter is the only parameter that the user must enter. Sample's thickness is automatically measured just before the dynamic measurement sequence. Measurements data are automatically processed at the end of the procedure. A post-processing interface allows the computation of the Young's modulus, Poisson's ratio, and structural loss factor. A color code gives indications on the quality of the results obtained.

Measured Parameters

(1) Young modulus, (2) Poisson's Ratio, (3) structural loss factor, (4) stiffness, (5) Thickness

Measurement steps

STEP 5 : Post processing. QMA-X automatically identifies all couples of samples with different shape factors, and calculate all the elastic properties: Young's modulus, Poisson's ratio, and structural loss factor

Product Data – Quasi-static Mechanical Analyzer (QMA)

Additional features

• Stiffness vs. Compression

This module measures the stiffness of the material on a range of compression rate in order to define the value to apply on the material for optimal results.

• Data export

All data for each couple of samples exported in *.txt file easily readable by Excel:

- Young modulus
- o Poisson's ratio
- Structural loss factor

QMA-X specifications

Compatibilities	Windows 8 and 10
	32 or 64 bits
Result file type	.txt
Export graph file type	.txt

RELATED ACCESSORIES AND OPTIONS

Circular cutter

Available diameters (mm)*	29, 44.44, 100
Maximum sample thickness (mm)	75
Material	Stainless steel

* Custom diameter available on demand.

Sample slicer

Available diameters (mm)	29, 44.44, 100
Maximum sample thickness (mm)	100
Also include	Acoustic material knife

Foam-X software

Based on the sound absorption coefficient measured in impedance tube (ASTM E1050, ISO 10534-2), Foam-X computes all the acoustic parameters (e.g. poroelastic Biot exclusively) you need to model a single or an equivalent acoustic material.

Nova software

Nova predicts sound absorption and transmission loss (and more) of single or multilayer materials. Simulation is based on the acoustic parameters you determined with Foam–X or direct characterisation apparatuses such as a airflow resistance meter (SIGMA), a porosity meter (PHI), a tortuosity meter (TOR), and a mechanical analyzer (QMA) or using directly the measured transfer matrix obtain using our transmission tube.

ANNEX 1 – QMA SYSTEM

Mecanum Inc., All right reserved – The information in this document is subject to change without prior notice Ref.: QMAX20200727

ANNEX 2 – QMA INCLUDED PARTS

